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Presented in the figure as an illustration are the dependences eo(O0) and ~*(~o) for C = 
D = i, nl = 2, m~ = 6. We examine two combinations of values of the remaining exponents char- 

acterized by the parameter k. In the case k = 1 the exponents m= and n2 take the values m2 = 
9 and n2 = 7, while in the case k = 2 they are m= = 7 and n2 = 9. The curve So(Oo) which 
is common to both cases is superposed by solid lines, while the curves E*(Oo) for k = 1 and 
2 are superposed, respectively, by dashed and dash-dot lines. It is evident from (17) and 
Fig. 1 that the dependence ~*(oo) is not monotonic for k = 1 and decreases monotonically 
for k = 2. 

Let us note that thenonmonotonicityof the function s*(Oo) results from the relationship 
of the exponents for components governing the creep characteristics of the material. The non- 
monotonicity appears when the creep rate has a higher degree of dependence on the stress as 
compared with the dependence of the cumulative creep damage. In this case taking account of 

the nonlinear instantaneous characteristics plays a part analogous to that of the nonmonotonic- 
ity noted earlier when using different functional dependences for the creep rate and the cumu- 

lative damage rate [4]. 
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STEADY-STATE CREEP IN REFRACTORY COMPOSITES 

V. V. Dudukalenko and S. P. Shapovalov UDC 539.376 

There are anomalous variations in creep rate in the range I000-1800~ for corundum-based 
refractories having high concentrations of Zr02 inclusions. 

Measurements have been made [i] on torsion on cylindrical specimens under conditions of 
steady-state creep at various temperatures. The characteristic dependence of the creep rate 
on load (Fig. I) shows that there is an anomalous viscosity change in the region of the phase 
transition temperature of ZrO= [I]. 

i. We use a form of the Bingham model to approximate the relationship shown in Fig. I. 
The dissipative functions D are taken as differing from small and large strain rates cij and 
for the corresponding stresses ~ij [2]: 

O :~ ~gijgij ~ (1/~)VEijSfj, Sij'-- a i  ~ ~ ( 1 / 3 ) U l l S i j  ~ OD/Ogij ' 

where k is the plasticity limit and ~ is the viscosity, while the subscript a in k a and va 
denotes those quantities for high strain rates, 

The invariants y = ~ijsij, T = ~ssijsij always simultaneously act as symbols for the 
shear components in uorsion. In the (p, ~p) polar coordinate system, the maximal stresses 
are obtained at the surface of a rod p = R, while the transition from T = k + ~y to T=k a+ 
~aY may occur at 0 = Ri. The zone of rapid creep propagates towards the center of the rod 
as the stresses increase. It can be shown that the piecewise-linear T(y) relationship goes 
over to a smooth conjugate one for the dependence of the torsional moment M on the torsion 
rate 9. As y = ~p, we have 
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(i.i) 

( 1 . 2 )  

Then (i.i) and (1.2) relate the parameters of the approximating relationships (Fig. i) 
to the parameters k, ks, v, ~a of the generalized Bingham model. Formula (i.i) defines a lin- 
ear dependence on 8, while (1.2) defines an asymptotically linear one (8 + ~), which enables 
one to calculate the parameters of the piecewise-linear T(y) relationship from the experi- 
mental data (Fig. I). 

When an electrically fused refractory cools in a vitreous matrix containing Zr02 crys- 
tals, the viscosity increases because rigid corundum crystals are formed. Under these con- 
ditions, the material can experience high stresses, which may cause plastic strain in the 
Zr02 crystals, and the twinned structure in the latter explains the plasticity limit and the 
low viscosity of the inclusions. 

If we use the above as a hypothesis, we can show that a two-phase structure whose com- 
ponents satisfy the Bingham relations is described by rheological relations characterizing 
the anomalous transition to high creep rates. This transition corresponds to the onset of 
plastic strain in the inclusions. 

2. The two-phase structure consists of viscop2astic components that obey the Bingham 
rheological equations, which specify the relationship between the stresses oij and the strain 
rates cij in the form 

k e/i .~.ve~i, _a l j  i 
~0 = V~kz% t s O -  - -  ~-au6iJ' 

where k is the plasticity limit and v is the viscosity of the matrix. The parameters of the 
inclusions are denoted by kz and ~. 

In a macroscopic volume V consisting of regions V~ for the inclusions and V2 for the 
matrix, the dissipative function D is [3] 

t - - t  t ( k + ~ "  vie{fi~J) dV '  ( 2 . 1 )  

"2 VI 

In [3] we find a method of solving an analogous problem for the case of ideally plastic 
components in a heterogeneous structure. If one minimizes the function of (2.1) with the 
expected fluctuations for fixed mean values <sij>, one can calculate D(<eij>), and therefore 
one can define the equations for the mean stresses <oi~> = 3D/3<si~>. We use formulas for 
averaging over regions VI and V2 correspondingly for s~herical inclusions: <~ijeij>1 = 
<~i'>i<si.>i, < ~ > 2 =  <~si~ which corresponds to the hypothesis of evaluating (2.1) 
forJan o p t i m a l l y  c o u p l e d  m a t r i x ,  i j > 2 '  

Let the geometrical structure of the material be defined by the isotropic function• 
which takes the value 1 on the inclusions and 0 on the matrix. Clearly, <x~ = c = VI/V, and 
we have 
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Fig. i 
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( t  -- C) <gijgij> 2 - =  <~,ijEij> - - -  C<8ijEij>1, 

<"'@ = ~  (<~>i - <~>)' 

where the primes denote fluctuations. 

We introduce the symbols 

z~ = <%> <%>, .z~_ =. <%>i <%>: 
12 ~ L ' ' -- cir. = I o -, <~/~/~> 

(2.2) 

Then (2.1) is put as 

1) --, k ]/i-----27Z § :::[i § (I/2) vI 2 § (t/2) v:I~. 

The c o n d i t i o n  f o r  a t u r n i n g  p o i n t  i n  (2 .3 )  l e a d s  to t he  e q u a t i o n s  
! r ' r _ ! t r 

l~ I/T~-c (%,j - <%>:,j)/I _~-. ~ <~./# ~,j/~ .~_. ,,%j' + (,, _. ,,) <~:~j>, • ..... :,,~, ,,/.~ =: o, 

where p' represents the fluctuations in the hydrostatic pressure. 

[3]: 

(2.3) 

(2.4) 

The solution to (2.4) is obtained as spectral expansions in terms of the wave numbers ~i 

t =~ , �9 

e~j (<e/t>1 ~l~j ~-2 § <aj~>l ~z$i $-2 -- 2 <%1>i Sh~l~iSj) A• , (2.5) 

= ]//'~i~:, A = (v 1 § § k-Vi -- ctI), 

and then because • is isotropic we have 
,p 2 

<• eij> = c (<e/j>l -- <eij>)= -g- c (i -- c) A @ij>i' (2.6) 

2 
<~::J> = T c (~ - c) A 2 <%>I <%>i 

Formulas (2.5) give a system of equations for the invariants I and Ix: 

( ) 2 c ( 1 - - c )  A2I~. (2 .7 )  2 (I--c)  A =Io,  1 2 ~ I ~ - - c I ~ + . ~ -  11 l---~-- 

In accordance with the values <~ij> of the stresses, one canget deformation in which 
the inclusions behave as rigid particles. The latter begin to deform when critical stresses 
are reached. As Ii = 0 for undeformable inclusions, we have from (2.4)-(2.7) that 

t ~ 2 k i 
D=kVi2CZ§ v+kyi__n_d F (2 .8 )  

12 2 2 k ~ ~ = io + ~ -  ~ (~ - ~) k~/(~ + .  V ~  - d l ) - .  

The latter two equations resolve the indeterminacy with respect to k, so the dissipative 
function takes the following form for rigid inclusions: 

3 

D = k  t+. .~--Clo+ v i--c I~. (2 .9 )  

One can readily derive the plasticity and viscosity limits in (2.9) for the material con- 
taining rigid inclusions. 

The critical value I~ of the strain intensity at which the stresses in the inclusions 
attain the plasticity limit kz is given by (2.8) as 

k -- 5 k § (2.10) 
i-- E - ~  l _ c o "  

t + - 7 c  

We transfer to determining the rheological model when both phases are in the plastic 
state. It follows from (2.10) that for kx < (~)k the inclusions are in the plastic state 
from the start of deformation. In other cases, (2.9) applies for rigid inclusions at the 
start, and then when I~ is attained the general relations (2.5)-(2.7) apply, which incorpo- 
rate the inclusion plasticity. 

One can represent the relationships between T= /<sij><sij>/k and u = lo~/k for various 
c with the parameters of a composite in the (T, y) plane as a family of curves separated by 
the boundary y = y*(c), T = T*(c) (Fig. 2) 
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with this corresponding to the points where the inclusions go over to the plastic state. 
These boundaries are shown by dashed lines indicating the values of kl/k in Fig. 2. To the 
left of the boundary, the material is characterized by the Bingham relations: 

3 
~=t / "  + - 7  t 4--2- ~ t 3 e~ i___~7_~,, 

and to the right by a nonlinear relationship, which for y § ~ approximates a linear one with 
the asymptotic limits to the plasticity k a and viscosity ~a: 

,',/,, = I-- c (I -- ,i/,)/[I -- ~ (I -- c) (l -- ~II, 

~ I  ' ' '$ 2. /~_  :2. el .  
~J ~ J  

It is necessary to use these formulas because it is technically difficult to examine the 
microstructure at high temperatures. The formulas enable one to relate the parameters mea- 
sured in macroscopic experiments to the concentrations and parameters of the components such 
as corundum and baddeleyite, which are widely used in refractory composites [4]. These com- 
ponents have been examined in some detail at various temperatures. However, theoretical 
methods have to be used to relate the structuring to the thermal history. The formulas can 
be used to calculate the parameters of a matrix containing Zr02 inclusions. Then the self- 
consistency hypothesis can be employed to calculate the properties of the matrix as a com- 
bination of corundum crystals and a vitreous bonding agent, i.e., one again applies the for- 
mulas derived here, but this time for rigid inclusions. The properties of ZrO2 and of corun- 
dum crystals are stable, but the concentration of the vitreous phase is very much dependent 
on the thermal history, which has to be calculated. The macroscopic parameters of the materi- 
al as functions of temperature can be calculated from experimental data, for example for tor- 
sion (Fig. i). The data are closely fitted by (i.i) and (1.2), which are represented by theo- 
retical curves in Fig. 1 (---) for t ~ = 1200~ (kR 3 = 4.78, ~R 4 = 5.73"104 , ka R3 = 13.14, 
Wa R4 = 0.38"104); t ~ = 1300~ (kR 3 = 2.39, wR 4 = 4.08.!04 , ka R3 = 10.37, Wa R4 = 0.25-104); 

t ~ = 1400~ (kR s = 1.91, vR 4 = 0.25"104 , ka Rs = 8.84, Wa R4 = 0.16"104). 
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